Skip to main content

Overloading......A Matter Of Taste !!!

This was a pretty interesting discussion about method overloading in the managed world. As the discussion says that the overloading is a matter of taste. It seems that the method overloading in the managed world, indeed, is a matter of taste. Sad BUT True !!! But on the contrary, it must have been a [strict] rule. Overloading might be exhibited differently by each language in the unmanaged world. But as far as .NET goes, it must have been made a standard specification. Pardon me, if there is one.

As it was pointed out in the discussion, how do we define the behaviour in the case where we derive classes across assemblies developed in another .NET language ?

As far traditional C++ goes, the overloaded method resolution starts from the derived but does not have strict type checking eg. for numeric types]. And the point to note is that only the method in the derived class with the exact prototype as the base is considered the overload. Ofcourse, C++ is not as much type safe as C#. This is taken care in C# by the override keyword which allows only the exact prototypes to be involved in overloading. And at times explicit casting is required unlike in C++.

But in the case of C#, the first principle observed in overloading is to avoid it. Pretty confusing, huh? Take a look at the example below:-


namespace Samples.MyConsole
{
class Parent
{
public void Foo()
{
Console.WriteLine("Parent.Foo");
}
}

class Child : Parent
{
public void Bar()
{
Console.WriteLine("Child.Bar");
}
}

class Base
{
public virtual void XYZ(Child c)
{
c.Foo();
c.Bar();
}
}

class Derived : Base
{
public virtual void XYZ(Parent p)
{
p.Foo();
}

public override void XYZ(Child c)
{
base.XYZ(c);
}
}

class User
{
public static void SomeMethod()
{
Child c = new Child();
Parent p = c as Parent;

Derived d = new Derived();
Base b = d as Base;

Console.WriteLine("Playing with Derived");
d.XYZ(c);
d.XYZ(p);

Console.WriteLine("\nPlaying with Base");
b.XYZ(c);
b.XYZ(p as Child);
}
}
}

Here is the output at the console:-

Playing with Derived
Parent.Foo
Parent.Foo

Playing with Base
Parent.Foo
Child.Bar
Parent.Foo
Child.Bar

You would have guessed the surprise that you are about to experience. Yes, d.XYZ(c) calls the Derived.XYZ(Parent p), and not the Derived.XYZ(Child c) which is a better match. It does if it had been defined as public new void XYZ(Child c). But same is not the case with C++. It gives us no suprise.

And as far as C++/CLI is concerned, it behaves as traditional C++.

So the intriguing bitter part is that the overloading in the managed world is not a thing at the CLR level nor does it seem to be something concerned with the specification. It seems to be a matter of taste.
Post a Comment

Popular posts from this blog

Passing CComPtr By Value !!!

This is about a killer bug identified by our chief software engineer in our software. What was devised for ease of use and write smart code ended up in this killer defect due to improper perception. Ok, let us go!CComPtr is a template class in ATL designed to wrap the discrete functionality of COM object management - AddRef and Release. Technically it is a smart pointer for a COM object.void SomeMethod() { CComPtr siPtr; HRESULT hr = siPtr.CoCreateInstance(CLSID_SomeComponent); siPtr->MethodOne(20, L"Hello"); }Without CComPtr, the code wouldn't be as elegant as above. The code would be spilled with AddRef and Release. Besides, writing code to Release after use under any circumstance is either hard or ugly. CComPtr automatically takes care of releasing in its destructor just like std::auto_ptr. As a C++ programmer, we must be able to appreciate the inevitability of the destructor and its immense use in writing smart code. However there is a difference between …

out, ref and InvokeMember !!!

When I was working on the .NET reflection extravaganza thing that I explained in my previous column, i learnt one another interesting thing, that is about the Type.InvokeMember. How will pass out or ref parameters for the method invoked using Type.InvokeMember ? If you are going to invoke a method with the prototypeint DoSomething(string someString, int someInt);then you would use InvokeMember like this:-object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance,
null,
this,
new object[] {"Largest Integer", 1});or use some variables in the new object[] {...}. But what do you with the args if DoSomething takes out or ref parameters ?int DoSomething(out string someString, ref int someInt);Something like this will not work string someText = string.Empty;
int someInt = 0;
object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic …

Offering __FILE__ and __LINE__ for C# !!!

THIS POST USES SYNTAXHIGHLIGHTER AND HAS ISSUES RENDERING CODE ONLY IN CHROME
Not the same way but we could say better.
Visual Studio 2012, another power packed release of Visual Studio, among a lot of other powerful fancy language features, offers the ability to deduce the method caller details at compile time.
C++ offered the compiler defined macros __FILE__ and __LINE__ (and __DATE__ and __TIME__), which are primarily intended for diagnostic purposes in a program, whereby the caller information is captured and logged. For instance, using __LINE__ would be replaced with the exact line number in the file where this macro has been used. That sometimes beats the purpose and doesn't gives us what we actually expect. Let's see.

For instance, suppose you wish to write a verbose Log method with an idea to print rich diagnostic details, it would look something like this.
void LogException(const std::string& logText, const std::string& fileName, …