Skip to main content

Learning Type Access Modifiers Basics !!!

When I started developing my module, I had an interface IParamCountBasedAlgo declared as a nested type in a class AlgorithmOneExecutor, declared as follows:-

namespace DataStructuresAndAlgo
{
partial class AlgorithmOneExecutor
{
private interface IParamCountBasedAlgo
{
void Validate();
void Execute();
}
}
}

There were other concrete nested types inside AlgorithmOneExecutor that implemented IParamCountBasedAlgo. But later, other types nested in other than AlgorithmOneExecutor emerged that required to implement IParamCountBasedAlgo. So I moved IParamCountBasedAlgo from a nested type to a direct type under the namespace DataStructuresAndAlgo, as declared below:-

namespace DataStructuresAndAlgo
{
private interface IParamCountBasedAlgo
{
void Validate();
void Execute();
}
}
And the compiler spat an error "Namespace elements cannot be explicitly declared as private, protected, or protected internal". Then a simple research gave me an insight that types directly under namespace can be declared either public or internal only, and the default is internal. Seems reasonable cuz if declared private, it gives an ambiguous look that it cannot accessed or created and protected seems rather very unrelated. Hence either public or internal only.

A subtle point to note is that not all access modifiers are applicable for all types and at all declaration levels. To learn the basics of type access modifiers, visit http://msdn2.microsoft.com/en-us/library/ms173121.aspx

Comments

Popular posts from this blog

Extension Methods - A Polished C++ Feature !!!

Extension Method is an excellent feature in C# 3.0. It is a mechanism by which new methods can be exposed from an existing type (interface or class) without directly adding the method to the type. Why do we need extension methods anyway ? Ok, that is the big story of lamba and LINQ. But from a conceptual standpoint, the extension methods establish a mechanism to extend the public interface of a type. The compiler is smart enough to make the method a part of the public interface of the type. Yeah, that is what it does, and the intellisense is very cool in making us believe that. It is cleaner and easier (for the library developers and for us programmers even) to add extra functionality (methods) not provided in the type. That is the intent. And we know that was exercised extravagantly in LINQ. The IEnumerable was extended with a whole lot set of methods to aid the LINQ design. Remember the Where, Select etc methods on IEnumerable. An example code snippet is worth a thousand ...

Implementing COM OutOfProc Servers in C# .NET !!!

Had to implement our COM OOP Server project in .NET, and I found this solution from the internet after a great deal of search, but unfortunately the whole idea was ruled out, and we wrapped it as a .NET assembly. This is worth knowing. Step 1: Implement IClassFactory in a class in .NET. Use the following definition for IClassFactory. namespace COM { static class Guids { public const string IClassFactory = "00000001-0000-0000-C000-000000000046"; public const string IUnknown = "00000000-0000-0000-C000-000000000046"; } /// /// IClassFactory declaration /// [ComImport(), InterfaceType(ComInterfaceType.InterfaceIsIUnknown), Guid(COM.Guids.IClassFactory)] internal interface IClassFactory { [PreserveSig] int CreateInstance(IntPtr pUnkOuter, ref Guid riid, out IntPtr ppvObject); [PreserveSig] int LockServer(bool fLock); } } Step 2: [DllImport("ole32.dll")] private static extern int CoR...

Android meets .NET !!!

It is always fun for me to program in C# (besides C++). If so, how would I feel if I was able to program for Android in C#? You may be wondering what in the world I am talking about. Android development environment is all Java and open source stuff. How could this Microsoft thing fit onto it? Well, it seems that some clever guys had huddled up and ported Mono for Android , developed .NET libraries for the Android SDK, and also supplemented it with a 'Mono for Android' project template in Visual Studio; and called it mono for android . Thus we end up writing C# code happily for Android. After a bunch of installations , fire up your Visual Studio (2010) and you should be seeing a new project template 'Mono for Android' under C#. Create a new 'Mono for Android' project, which by default comes with an activity - C# code. Modified the orginal code to try starting a new activity from the default one... The project layout for most of the part is...