Skip to main content

Anonymous Classes vs Delegates !!!

I am not a java programmer. By that, I do not mean I am against Java. As a programmer by profession and passion, I try to learn things along the way. That includes a little of bit of Java. I should say that my proper encounter, so to say, with Java is a simple application that I am trying out with Android. There might be some hard core differences and/or limitations in the Android version of Java. But I am almost certain that I am using only primary level features of Java.

In android, there is this OnClickListener interface, which is used as a callback interface for a button click. So, it is used something like this:-

// Create an anonymous implementation of OnClickListener
private OnClickListener mCorkyListener = new OnClickListener() {
    public void onClick(View v) {
        // do something when the button is clicked
    }
};

protected void onCreate(Bundle bundle) {
    ...

    Button button = (Button)findViewById(R.id.someButton);
    button.setOnClickListener(new OnClickListener() {
        @Override
        public void onClick(View v) {
        // Click handler action code...
        }
    });
    ...
}

OnClickListener, which is an interface with a single method onClick, represents a type for the button click event. The highlighted portion of the code that registers an event handler for the button click action is called an Anonymous Class definition. That is some really some clever syntax; although it seems a wrong tool for our purpose here. Actually the click event requires only a method to call when the button is clicked. Nothing more. So why do we need an interface here?

I know of a better way in C#. Back there, it is called a delegate. In simple words, a delegate is an object-oriented pointer to a function, and it could point to any public\private instance\static function of any class. So a delegate is a good fit for our situation here. If the highlighted portion of the code (event registration) were to be written in C#:-

button.setOnClickListener(delegate(View v) {
    // Click handler action code....
});

I have gone one step further and used an anonymous delegate, which is even more succinct. Sometimes, less syntactic noise is a good feeling for a programmer. I am not doing a language war here. I am just trying to vote for delegates in Java. I am not sure if they are already there in one of the latest versions.

But there is a C# fanatic inside of me, which compels me to show the world how better and good-looking (see pascal casing) C# code actually is.

protected void OnCreate(Bundle bundle)
{
    var button = FindViewById<Button>(R.Id.SomeButton);
     button.Click += delegate(View v) {
        // Click handler code.
    };
}

Beauty lies in the eyes of the beholder!

Nevertheless, anonymous class is definitely a wonderful and powerful syntax, but does not look good in the example above.

1 comment

Popular posts from this blog

Passing CComPtr By Value !!!

This is about a killer bug identified by our chief software engineer in our software. What was devised for ease of use and write smart code ended up in this killer defect due to improper perception. Ok, let us go!CComPtr is a template class in ATL designed to wrap the discrete functionality of COM object management - AddRef and Release. Technically it is a smart pointer for a COM object.void SomeMethod() { CComPtr siPtr; HRESULT hr = siPtr.CoCreateInstance(CLSID_SomeComponent); siPtr->MethodOne(20, L"Hello"); }Without CComPtr, the code wouldn't be as elegant as above. The code would be spilled with AddRef and Release. Besides, writing code to Release after use under any circumstance is either hard or ugly. CComPtr automatically takes care of releasing in its destructor just like std::auto_ptr. As a C++ programmer, we must be able to appreciate the inevitability of the destructor and its immense use in writing smart code. However there is a difference between …

out, ref and InvokeMember !!!

When I was working on the .NET reflection extravaganza thing that I explained in my previous column, i learnt one another interesting thing, that is about the Type.InvokeMember. How will pass out or ref parameters for the method invoked using Type.InvokeMember ? If you are going to invoke a method with the prototypeint DoSomething(string someString, int someInt);then you would use InvokeMember like this:-object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance,
null,
this,
new object[] {"Largest Integer", 1});or use some variables in the new object[] {...}. But what do you with the args if DoSomething takes out or ref parameters ?int DoSomething(out string someString, ref int someInt);Something like this will not work string someText = string.Empty;
int someInt = 0;
object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic …

Offering __FILE__ and __LINE__ for C# !!!

THIS POST USES SYNTAXHIGHLIGHTER AND HAS ISSUES RENDERING CODE ONLY IN CHROME
Not the same way but we could say better.
Visual Studio 2012, another power packed release of Visual Studio, among a lot of other powerful fancy language features, offers the ability to deduce the method caller details at compile time.
C++ offered the compiler defined macros __FILE__ and __LINE__ (and __DATE__ and __TIME__), which are primarily intended for diagnostic purposes in a program, whereby the caller information is captured and logged. For instance, using __LINE__ would be replaced with the exact line number in the file where this macro has been used. That sometimes beats the purpose and doesn't gives us what we actually expect. Let's see.

For instance, suppose you wish to write a verbose Log method with an idea to print rich diagnostic details, it would look something like this.
void LogException(const std::string& logText, const std::string& fileName, …