Skip to main content

Invoking methods with out and ref - Finale !!!

Alright, it is a long wait. And I am going to keep it short.

Recap of the problem: Why did the ref variable in SomeMethod not get the expected result (DayOfWeek.Friday) when called from a different thread?

Boxing. Yes, that is the culprit. Sometimes, it is subtle to note. DayOfWeek is an enum - a value type. When the method is called from a different thread, we put the argument (arg3) in an object array, and that's where the value gets boxed. So we happen to assign the resultant value to the boxed value.

So how do resolve the issue? Simple.......assign the value back from the object array to the ref variable.

int SomeMethod(string arg1,
    string arg2,
    ref DayOfWeek arg3)
    if (Dispatcher.CheckAccess())
        var funcDelegate = (Func<string, string, DayOfWeek, int>)SomeMethod;

        var args = new object[] {

        int retVal = Dispatcher.Invoke(funcDelegate, args);
        arg3 = args[2];
        return retVal;

    // No more implementation
    arg3 = DayOfWeek.Friday;

    return 1234;

It may not be worth the wait but it is subtle enough to plant a bug in the code; tough enough to be noted.

Post a Comment

Popular posts from this blog

Passing CComPtr By Value !!!

This is about a killer bug identified by our chief software engineer in our software. What was devised for ease of use and write smart code ended up in this killer defect due to improper perception. Ok, let us go!CComPtr is a template class in ATL designed to wrap the discrete functionality of COM object management - AddRef and Release. Technically it is a smart pointer for a COM object.void SomeMethod() { CComPtr siPtr; HRESULT hr = siPtr.CoCreateInstance(CLSID_SomeComponent); siPtr->MethodOne(20, L"Hello"); }Without CComPtr, the code wouldn't be as elegant as above. The code would be spilled with AddRef and Release. Besides, writing code to Release after use under any circumstance is either hard or ugly. CComPtr automatically takes care of releasing in its destructor just like std::auto_ptr. As a C++ programmer, we must be able to appreciate the inevitability of the destructor and its immense use in writing smart code. However there is a difference between …

out, ref and InvokeMember !!!

When I was working on the .NET reflection extravaganza thing that I explained in my previous column, i learnt one another interesting thing, that is about the Type.InvokeMember. How will pass out or ref parameters for the method invoked using Type.InvokeMember ? If you are going to invoke a method with the prototypeint DoSomething(string someString, int someInt);then you would use InvokeMember like this:-object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance,
new object[] {"Largest Integer", 1});or use some variables in the new object[] {...}. But what do you with the args if DoSomething takes out or ref parameters ?int DoSomething(out string someString, ref int someInt);Something like this will not work string someText = string.Empty;
int someInt = 0;
object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic …

Offering __FILE__ and __LINE__ for C# !!!

Not the same way but we could say better.
Visual Studio 2012, another power packed release of Visual Studio, among a lot of other powerful fancy language features, offers the ability to deduce the method caller details at compile time.
C++ offered the compiler defined macros __FILE__ and __LINE__ (and __DATE__ and __TIME__), which are primarily intended for diagnostic purposes in a program, whereby the caller information is captured and logged. For instance, using __LINE__ would be replaced with the exact line number in the file where this macro has been used. That sometimes beats the purpose and doesn't gives us what we actually expect. Let's see.

For instance, suppose you wish to write a verbose Log method with an idea to print rich diagnostic details, it would look something like this.
void LogException(const std::string& logText, const std::string& fileName, …