Skip to main content

finally and Return Values !!!

Let us read some code:-

int SomeMethod()
{
    int num = 1;

    try
    {
        num = 5;
        return num;
    }
    finally
    {
        num += 5;
    }
}

What is the return value of SomeMethod? Some anonymous guy asked that question in the code project forum, and it has been answered. I am writing about it here because it is interesting and subtle. One should not be surprised when people misinterpret finally. So let us take a guess, 10 (i = 5, then incremented by 5 in the finally block).

It is not the right answer; rather SomeMethod returns 5. Agreed that finally is called in all cases of returning from SomeMethod but the return value is calculated when it is time to return from SomeMethod, normally or abnormally. The subtlety lies not in the way finally is executed but in the return value is calculated. So the return value (5) is decided when a return is encountered in the try block. The finally is just called for cleanup; and the num modified there is local to SomeMethod. So make the return value 10, it is no use being hasty making SomeMethod return from the finally block. Because returning from finally is not allowed. (We will talk about it later why returning from catch block is a bad practice and why can't we return from finally block).

Had such modifications been done on a reference type, they would have been visible outside of SomeMethod, although the return value may be different. For instance,

class Num
{
    public int _num = 0;
};

int SomeMethod()
{
    Num num = new Num();

    try
    {
        num._num = 5;
        return num._num;
    }
    finally
    {
        num._num += 5;
    }
}

So in the above case, the return value is still 5, but the Num._num would have been incremented to 10 when SomeMethod returns. So reflecting shows that our code is transformed as follows by the compiler, where the CS$1$0000 is our return value.

private static int SomeMethod(Num num)
{
    int CS$1$0000;

    try
    {
        num._num = 5;
        CS$1$0000 = num._num;
    }
    finally
    {
        num._num += 5;
    }

    return CS$1$0000;
}

Given that we have clarified ourselves about finally, we should be writing the code as transformed by the compiler because returning from try and catch blocks is not a good practice.

Post a Comment

Popular posts from this blog

out, ref and InvokeMember !!!

When I was working on the .NET reflection extravaganza thing that I explained in my previous column, i learnt one another interesting thing, that is about the Type.InvokeMember. How will pass out or ref parameters for the method invoked using Type.InvokeMember ? If you are going to invoke a method with the prototypeint DoSomething(string someString, int someInt);then you would use InvokeMember like this:-object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance,
null,
this,
new object[] {"Largest Integer", 1});or use some variables in the new object[] {...}. But what do you with the args if DoSomething takes out or ref parameters ?int DoSomething(out string someString, ref int someInt);Something like this will not work string someText = string.Empty;
int someInt = 0;
object obj = someType.InvokeMember("DoSomething",
BindingFlags.Public | BindingFlags.NonPublic …

Passing CComPtr By Value !!!

This is about a killer bug identified by our chief software engineer in our software. What was devised for ease of use and write smart code ended up in this killer defect due to improper perception. Ok, let us go!CComPtr is a template class in ATL designed to wrap the discrete functionality of COM object management - AddRef and Release. Technically it is a smart pointer for a COM object.void SomeMethod() { CComPtr siPtr; HRESULT hr = siPtr.CoCreateInstance(CLSID_SomeComponent); siPtr->MethodOne(20, L"Hello"); }Without CComPtr, the code wouldn't be as elegant as above. The code would be spilled with AddRef and Release. Besides, writing code to Release after use under any circumstance is either hard or ugly. CComPtr automatically takes care of releasing in its destructor just like std::auto_ptr. As a C++ programmer, we must be able to appreciate the inevitability of the destructor and its immense use in writing smart code. However there is a difference between …

jqGrid: Handling array data !!!

This post is primarily a personal reference. I also consider this a tribute to Oleg, who was fundamental in improving my understanding of the jqGrid internals - the way it handles source data types, which if I may say led him in discovering a bug in jqGrid.

If you are working with local array data as the source for jqGrid, meaning you will get the data from the server but want the jqGrid not to talk to the server anymore, and want to have custom handling of the edit functionality/form and delete functionality, it is not going to be straightforward - you need to have a decent understanding of how jqGrid works, and you should be aware of the bug Oleg pointed in our discussion. I repeat this is all about using jqGrid to manage array data locally, no posting to server when you edit or delete, which is where the bug is.

$('#grid').jqGrid('navGrid', '#pager', { recreateForm: true, add: false, search: false, refresh: false, …