Skip to main content

Managed Debugging Assistant !!!

The Loader Lock is a synchronization object that hepls to provide mutual exclusion during DLL loading and unloading. It helps to prevent DLLs being re-entered before they are completely initialized [in the DLLMain].

When the some dll load code is executed, the loader lock is set and after the complete intialization it is unset. But there is a possibility of deadlock when threads do not properly synchronize on the loader lock. This mostly happens when threads try to call other other Win32 APIs [LoadLibrary, GetProcAddress, FreeLibrary etc] that also require the loader lock. Often this is evident in the mixed managed/unmanaged code, whereby it is not intentional but the CLR may have to call those APIs like during a call using platform invoke on one of the above listed Win32 API.

For instance, if an unmanaged DLL's DllMain entry point tries to CoCreate a managed object that has been exposed to COM, then it is an attempt to execute managed code inside the loader lock.

MDA - Managed Debugging Assistant, facility available in .NET 2.0/VS 2005 helps to find out this situation while debugging and pops up a dialog box. Then we can break into the code, have a look at the stack trace and resolve it. The feature can be disabled if not needed.

So what could be the effect of this deadlock ? It saved me whole of time and effort that I would have wasted when such a box poped up in my project, and I do not know if I would have found the reason. If the thread that deadlocks happens to be the GC thread or any thread that loads and unloads my assemblies, I do not have explain further the disasterous effect. And for a programmer like me, new to the .NET environment, who has not yet gotten out of the fascinating external features, will not ponder into the internals.
Post a Comment

Popular posts from this blog

Passing CComPtr By Value !!!

This is about a killer bug identified by our chief software engineer in our software. What was devised for ease of use and write smart code ended up in this killer defect due to improper perception. Ok, let us go!CComPtr is a template class in ATL designed to wrap the discrete functionality of COM object management - AddRef and Release. Technically it is a smart pointer for a COM object.void SomeMethod() { CComPtr siPtr; HRESULT hr = siPtr.CoCreateInstance(CLSID_SomeComponent); siPtr->MethodOne(20, L"Hello"); }Without CComPtr, the code wouldn't be as elegant as above. The code would be spilled with AddRef and Release. Besides, writing code to Release after use under any circumstance is either hard or ugly. CComPtr automatically takes care of releasing in its destructor just like std::auto_ptr. As a C++ programmer, we must be able to appreciate the inevitability of the destructor and its immense use in writing smart code. However there is a difference between …

jqGrid: Handling array data !!!

This post is primarily a personal reference. I also consider this a tribute to Oleg, who was fundamental in improving my understanding of the jqGrid internals - the way it handles source data types, which if I may say led him in discovering a bug in jqGrid.

If you are working with local array data as the source for jqGrid, meaning you will get the data from the server but want the jqGrid not to talk to the server anymore, and want to have custom handling of the edit functionality/form and delete functionality, it is not going to be straightforward - you need to have a decent understanding of how jqGrid works, and you should be aware of the bug Oleg pointed in our discussion. I repeat this is all about using jqGrid to manage array data locally, no posting to server when you edit or delete, which is where the bug is.

$('#grid').jqGrid('navGrid', '#pager', { recreateForm: true, add: false, search: false, refresh: false, …

Offering __FILE__ and __LINE__ for C# !!!

THIS POST USES SYNTAXHIGHLIGHTER AND HAS ISSUES RENDERING CODE ONLY IN CHROME
Not the same way but we could say better.
Visual Studio 2012, another power packed release of Visual Studio, among a lot of other powerful fancy language features, offers the ability to deduce the method caller details at compile time.
C++ offered the compiler defined macros __FILE__ and __LINE__ (and __DATE__ and __TIME__), which are primarily intended for diagnostic purposes in a program, whereby the caller information is captured and logged. For instance, using __LINE__ would be replaced with the exact line number in the file where this macro has been used. That sometimes beats the purpose and doesn't gives us what we actually expect. Let's see.

For instance, suppose you wish to write a verbose Log method with an idea to print rich diagnostic details, it would look something like this.
void LogException(const std::string& logText, const std::string& fileName, …