Skip to main content

Singularity - Safety & Speed !!!

I read about this interesting thing somewhere in MSDN.

There are two types of programming or programming languages. The good old C/C++ kind called the unsafe programming languages, and the other is the safe programming type which we realised very much after advent of Java/C#. And there has always been debate about safety and speed. And neither of the two has won.

So Microsoft is doing a research on a new operating system called Singularity which is written in a safe programming language [C#]. Although there are parts in the OS, especially the kernel, that uses unsafe code, it stills uses the safe C#. So in the Singularity environment, every program that runs is safe. And the environment as such is reinventing from the hardware layers up and above.

Any process in singularity will not be as huge as its counterpart in the unsafe world. It will start with very minimal image and bring up things as when required. But also there was some thing that i read but could not understand exactly. It said that Singularity processes are closed - dynamic loading of code is not allowed after the process starts executing.

Whatever, the environment is .NET as whole which means that .NET is not just libraries on the disk instead it is into the kernel. Microsoft is doing the research to prove that there is no compromise between speed and safety with this safe programming environment, and also help programmers stopping worrying about the choice of speed or safety.

Comments

Popular posts from this blog

Extension Methods - A Polished C++ Feature !!!

Extension Method is an excellent feature in C# 3.0. It is a mechanism by which new methods can be exposed from an existing type (interface or class) without directly adding the method to the type. Why do we need extension methods anyway ? Ok, that is the big story of lamba and LINQ. But from a conceptual standpoint, the extension methods establish a mechanism to extend the public interface of a type. The compiler is smart enough to make the method a part of the public interface of the type. Yeah, that is what it does, and the intellisense is very cool in making us believe that. It is cleaner and easier (for the library developers and for us programmers even) to add extra functionality (methods) not provided in the type. That is the intent. And we know that was exercised extravagantly in LINQ. The IEnumerable was extended with a whole lot set of methods to aid the LINQ design. Remember the Where, Select etc methods on IEnumerable. An example code snippet is worth a thousand

Implementing COM OutOfProc Servers in C# .NET !!!

Had to implement our COM OOP Server project in .NET, and I found this solution from the internet after a great deal of search, but unfortunately the whole idea was ruled out, and we wrapped it as a .NET assembly. This is worth knowing. Step 1: Implement IClassFactory in a class in .NET. Use the following definition for IClassFactory. namespace COM { static class Guids { public const string IClassFactory = "00000001-0000-0000-C000-000000000046"; public const string IUnknown = "00000000-0000-0000-C000-000000000046"; } /// /// IClassFactory declaration /// [ComImport(), InterfaceType(ComInterfaceType.InterfaceIsIUnknown), Guid(COM.Guids.IClassFactory)] internal interface IClassFactory { [PreserveSig] int CreateInstance(IntPtr pUnkOuter, ref Guid riid, out IntPtr ppvObject); [PreserveSig] int LockServer(bool fLock); } } Step 2: [DllImport("ole32.dll")] private static extern int CoR

sizeof vs Marshal.SizeOf !!!

There are two facilities in C# to determine the size of a type - sizeof operator and Marshal.SizeOf method. Let me discuss what they offer and how they differ. Pardon me if I happen to ramble a bit. Before we settle the difference between sizeof and Marshal.SizeOf , let us discuss why would we want to compute the size of a variable or type. Other than academic, one typical reason to know the size of a type (in a production code) would be allocate memory for an array of items; typically done while using malloc . Unlike in C++ (or unmanaged world), computing the size of a type definitely has no such use in C# (managed world). Within the managed application, size does not matter; since there are types provided by the CLR for creating\managing fixed size and variable size (typed) arrays. And as per MSDN, the size cannot be computed accurately. Does that mean we don't need to compute the size of a type at all when working in the CLR world? Obviously no, else I would